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At VIOS we do interdisciplinary AI 
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CMR a key tool in clinical worklows

Images from: Htike et al. Cardiovasc Diabetol (2016) 15:102 and Sermesant, et al Nature Rev Cardiology 2021

CMR
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Deep learning

• Needs examples

(      , cat)

(        , dog)

Cats and dogs various sources (Twitter, boredpanda.com)

f()

decision
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Scanners, Sites and Populations

Origins of variation:

• Scan parameters
(e.g. resolution) 

• Scanner 
(e.g. 1.5T vs 3T, vendor)

• Sequence used 
(e.g. T2w, cine, T1)

• Population
(e.g. ethnicity, gender)

• Site 
(e.g. protocols)

Figure from: Campello et al, Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation : The MMs Challenge, IEEE TMI 

2021
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Scanners, Sites and Populations

Origins of variation:

• Scan parameters
(e.g. resolution) 

• Scanner 
(e.g. 1.5T vs 3T, vendor)

• Sequence used 
(e.g. T2w, cine, T1)

• Population
(e.g. ethnicity, gender)

• Site 
(e.g. protocols)

Type of shift(s):

Acquisition

Population, prevalence,

manifestation

Annotation, population

Castro, Walker & Glocker. Causality matters in medical imaging. Nat Commun 11, 3673 (2020). 
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The naïve solution 

• Classical ML 

more data variation ➔ better performance

✓ Better AI generalise to

– Sensor variation

– Population variation 

Vendor A Vendor B

Vendor C

Vendor A

Vendor B

Vendor C
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The impossible gold standard

Gold standard to isolating effects of e.g. scanner: the same 

patient “travelling” to be imaged by all vendors

Vendor A

Vendor B

Vendor C

We will have to 

repeat this for any

effect we want to 

isolate. 
But what if we can 

separate influence of 

imaging from 

anatomy/pathology?
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How to achieve generalisation?

• During training:

– Harmonisation

– Domain generalization

• Invariance

• Adaptation 

– Data diversity by synthesis

• During application (deployment)

– Test-time adaptation / training
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LEARN REPRESENTATIONS
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Disentangled representations

✓ Separate & organize factors of variation!

✓ Such separation works in images, timeseries, text, …

✓ A paradigm shift…

Different

patient

Different

sensor

Sensor 

Characteristics
Patient 

Specifics

representation
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To learn more

2nd MICCAI 2021 tutorial 
vios.science/tutorials/dream2021

1st MICCAI 2022 workshop 

on disentanglement 

https://mad.ikim.nrw
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Disentangling the learning of anatomy 

Anatomy info

Anatomy 

Encoder

Modality 

Encoder

Decoder

[0.1 0.7 …]

Segmentor

Sensing info

Predictor Other tasks

(e.g. LVV)

Chartsias, Joyce, Papanastasiou, Semple, Williams, Newby, Dharmakumar & Tsaftaris (2018 and 2019)  Disentangled 

Representation Learning in Cardiac Image Analysis. Medical Image Analysis 2019 and MICCAI 2018 

Code: https://github.com/agis85/anatomy_modality_decomposition
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Use unlabeled images

Only with 6% of annotated data: 75.6 (Dice)

[all annotated data 84 Dice ]

Annotated images 

and masks

Agisilaos Chartsias et al. / Medical Image Analysis (2018) 9

Fig. 5. Segmentation example for di↵erent numbers of labelled images from the ACDC dataset. Blue, green and red show the models prediction for MYO,

LV and RV respectively.

cavity, then multiply thissum with thepixel resolution to get the

corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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Fig.5.Segmentationexamplefordi↵erentnumbersoflabelledimagesfromtheACDCdataset.Blue,greenandredshowthemodelspredictionforMYO,

LVandRVrespectively.

cavity,thenmultiplythissumwiththepixelresolutiontogetthe

correspondingareaandthenmultiplytheresultwiththeslice

thicknesstogetthevolumeoccupiedbyeachslice.Thefinal

volumeisthesumofallindividualslicevolumes.

PredictingtheLVVasanotheroutputofSDNetfollowsa

similarprocesstotheoneusedtocalculatethegroundtruth

values.Wedesignasmallneuralnetworkconsistingoftwo

convolutionallayers(eachhavinga3⇥3⇥16kernelfollowedby

aReLUactivation),andtwofullyconnectedlayersof16and1

neuronsrespectively,bothfollowedbyaReLUactivation.This

networkregressesthesumofthepixelsoftheleftventricle,

takingasinputthespatialrepresentation.Thepredictedsum

canthenbeusedtocalculatetheLVVo✏ine.

Usingapre-trainedmodeloflabelledimagescorresponding

toonesubject(lastrowinTable2with6%labels),wefine-

tunethewholemodelwhilsttrainingthearearegressorusing

groundtruthvaluesfrom17subjects.Wefindthattheaver-

ageLVVoverthetestvolumes(overbothEDandESframes)

is59.37mLwithastandarddeviationof3.7,whichisinthe

normalrangeasreportedin(Baietal.,2018a).Themulti-task

objectiveusedtofine-tunethewholemodelalsobenefitstest

segmentationaccuracy,whichisraisedfrom0.756to0.832.
3

Whilethisisforasinglesplit,observethatusingLVVasan

auxiliarytaske↵ectivelybroughtusclosertotherangeofhav-

ing50%annotatedmasks(secondrowinTable2).Thus,aux-

iliarytasks,suchasLVVprediction,whicharerelatedtothe

endocardialbordersegmentationcanbeusedtotrainmodelsin

amulti-tasksettingandleveragesupervisionpresentintypical

clinicalsettings.

3
Themulti-taskobjectiveinfactbenefitstheDicescoreforbothlabelsindi-

vidually:MYOaccuracyrisesfrom0.633to0.706andLVaccuracyrisesfrom

0.819to0.899.

5.3.Multimodallearning

Bydesign,ourmodelseparatestheanatomicalfactorfrom

theimagemodalityfactor.Asaresult,itcanbetrainedusing

multimodaldata,withthespatialfactorcapturingthecommon

anatomicalinformationandthenon-spatialfactorcapturingthe

intensityinformationuniquetoeachimage’sparticularmodal-

ity.HereweevaluateourmodelusingamultimodalMRand

CTinputtoachievesegmentation(Section5.3.1)andmodality

transformation(Section5.3.2).

5.3.1.Multimodalsegmentation

WetrainSDNetusingamultimodalinputofMRandCT

datawiththeaimtoimprovelearningoftheanatomicalfactor

frombothMRandCTsegmentationmasks.Infact,weshow

belowthatwhenmixingdatafromMRandCTimages,weim-

provesegmentationcomparedtowhenusingeachmodalitysep-

arately.Sincetheaimistospecificallyevaluatethee↵ectof

multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-

respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%

ofCTtothefullMRdataset,andviceversa;thisdoesnotonly

improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith

multimodaldataasinput.Onlytheimagemodalityfactorz
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Other images
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cavity, then multiply thissum with thepixel resolution to get the

corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3
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auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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network regresses the sum of the pixels of the left ventricle,
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can then be used to calculate the LVV o✏ine.
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to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-
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is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task
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ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages arenot considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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ages are not considered hereas part of the training process, and
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CT test sets, obtained when training a model with di↵ering
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neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum
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Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical

clinical settings.
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multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-
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is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-
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iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical
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multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-
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arately. Since the aim is to specifically evaluate the e↵ect of
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corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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similar process to the one used to calculate the ground truth
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical

clinical settings.
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding
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tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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Usingapre-trainedmodeloflabelledimagescorresponding
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anatomicalinformationandthenon-spatialfactorcapturingthe
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arately.Sincetheaimistospecificallyevaluatethee↵ectof
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agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering
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respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%

ofCTtothefullMRdataset,andviceversa;thisdoesnotonly

improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith
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similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neuronsrespectively,bothfollowedbyaReLUactivation.This
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takingasinputthespatialrepresentation.Thepredictedsum
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toonesubject(lastrowinTable2with6%labels),wefine-

tunethewholemodelwhilsttrainingthearearegressorusing

groundtruthvaluesfrom17subjects.Wefindthattheaver-

ageLVVoverthetestvolumes(overbothEDandESframes)
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provesegmentationcomparedtowhenusingeachmodalitysep-
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agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.
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CTtestsets,obtainedwhentrainingamodelwithdi↵ering
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respondtoimagesobtainedfromonesubject.Trainingwith
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ofCTtothefullMRdataset,andviceversa;thisdoesnotonly
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similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation
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neurons respectively, both followed by aReLU activation. This
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can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using
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anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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is 59.37mL with a standard deviation of 3.7, which is in the
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objective used to fine-tune the whole model also benefits test
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While this is for a single split, observe that using LVV as an
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ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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arately.Sincetheaimistospecificallyevaluatethee↵ectof
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CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.
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By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%

ofCTtothefullMRdataset,andviceversa;thisdoesnotonly

improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith

multimodaldataasinput.Onlytheimagemodalityfactorz

Agisilaos Chartsias et al. / Medical Image Analysis (2018) 9

Fig. 5. Segmentation example for di↵erent numbers of labelled images from the ACDC dataset. Blue, green and red show the models prediction for MYO,

LV and RV respectively.

cavity, then multiply thissum with thepixel resolution to get the

corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final
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similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by
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neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.
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tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.
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By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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arately.Sincetheaimistospecificallyevaluatethee↵ectof
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agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering
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respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR
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improvetheMR(increasingfrom0.74to0.76),butalsotheCT
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Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith

multimodaldataasinput.Onlytheimagemodalityfactorz
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taking as input the spatial representation. The predicted sum
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While this is for a single split, observe that using LVV as an
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iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical

clinical settings.
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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ground truth values from 17 subjects. We find that the aver-
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auxiliary task e↵ectively brought us closer to the range of hav-
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endocardial border segmentation can beused to train models in
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We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-
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arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and
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In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering
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respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%
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from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-
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improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).
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Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith
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corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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taking as input the spatial representation. The predicted sum
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ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the
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multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z

AgisilaosChartsiasetal./MedicalImageAnalysis(2018)9

Fig.5.Segmentationexamplefordi↵erentnumbersoflabelledimagesfromtheACDCdataset.Blue,greenandredshowthemodelspredictionforMYO,

LVandRVrespectively.

cavity,thenmultiplythissumwiththepixelresolutiontogetthe

correspondingareaandthenmultiplytheresultwiththeslice

thicknesstogetthevolumeoccupiedbyeachslice.Thefinal

volumeisthesumofallindividualslicevolumes.

PredictingtheLVVasanotheroutputofSDNetfollowsa

similarprocesstotheoneusedtocalculatethegroundtruth

values.Wedesignasmallneuralnetworkconsistingoftwo

convolutionallayers(eachhavinga3⇥3⇥16kernelfollowedby
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takingasinputthespatialrepresentation.Thepredictedsum
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Usingapre-trainedmodeloflabelledimagescorresponding
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InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-

respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%

ofCTtothefullMRdataset,andviceversa;thisdoesnotonly

improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).
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values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-
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objective used to fine-tune the whole model also benefits test
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While this is for a single split, observe that using LVV as an
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ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical

clinical settings.
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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5.3.2.Modalitytransformation
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Fig. 5. Segmentation example for di↵erent numbers of labelled images from the ACDC dataset. Blue, green and red show the models prediction for MYO,
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cavity, then multiply thissum with thepixel resolution to get the

corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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iliarytasks,suchasLVVprediction,whicharerelatedtothe

endocardialbordersegmentationcanbeusedtotrainmodelsin

amulti-tasksettingandleveragesupervisionpresentintypical

clinicalsettings.

3
Themulti-taskobjectiveinfactbenefitstheDicescoreforbothlabelsindi-

vidually:MYOaccuracyrisesfrom0.633to0.706andLVaccuracyrisesfrom

0.819to0.899.

5.3.Multimodallearning

Bydesign,ourmodelseparatestheanatomicalfactorfrom

theimagemodalityfactor.Asaresult,itcanbetrainedusing
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anatomicalinformationandthenon-spatialfactorcapturingthe
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multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-

respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%

ofCTtothefullMRdataset,andviceversa;thisdoesnotonly

improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith
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similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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ity transformations, it can be used as such, when trained with
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age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in
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intensity information unique to each image’s particular modal-
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CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neuronsrespectively,bothfollowedbyaReLUactivation.This
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takingasinputthespatialrepresentation.Thepredictedsum
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Usingapre-trainedmodeloflabelledimagescorresponding
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tunethewholemodelwhilsttrainingthearearegressorusing

groundtruthvaluesfrom17subjects.Wefindthattheaver-

ageLVVoverthetestvolumes(overbothEDandESframes)

is59.37mLwithastandarddeviationof3.7,whichisinthe

normalrangeasreportedin(Baietal.,2018a).Themulti-task

objectiveusedtofine-tunethewholemodelalsobenefitstest

segmentationaccuracy,whichisraisedfrom0.756to0.832.
3

Whilethisisforasinglesplit,observethatusingLVVasan

auxiliarytaske↵ectivelybroughtusclosertotherangeofhav-

ing50%annotatedmasks(secondrowinTable2).Thus,aux-

iliarytasks,suchasLVVprediction,whicharerelatedtothe

endocardialbordersegmentationcanbeusedtotrainmodelsin

amulti-tasksettingandleveragesupervisionpresentintypical

clinicalsettings.

3
Themulti-taskobjectiveinfactbenefitstheDicescoreforbothlabelsindi-

vidually:MYOaccuracyrisesfrom0.633to0.706andLVaccuracyrisesfrom

0.819to0.899.

5.3.Multimodallearning

Bydesign,ourmodelseparatestheanatomicalfactorfrom
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multimodaldata,withthespatialfactorcapturingthecommon

anatomicalinformationandthenon-spatialfactorcapturingthe
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ity.HereweevaluateourmodelusingamultimodalMRand
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CTtestsets,obtainedwhentrainingamodelwithdi↵ering
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respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%

ofCTtothefullMRdataset,andviceversa;thisdoesnotonly

improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith
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thickness to get the volume occupied by each slice. The final
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Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neurons respectively, both followed by aReLU activation. This
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can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-
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is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.
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By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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anatomicalinformationandthenon-spatialfactorcapturingthe
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5.3.1.Multimodalsegmentation
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agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-

respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR
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thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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CTtestsets,obtainedwhentrainingamodelwithdi↵ering
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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groundtruthvaluesfrom17subjects.Wefindthattheaver-
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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auxiliarytaske↵ectivelybroughtusclosertotherangeofhav-
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intensityinformationuniquetoeachimage’sparticularmodal-

ity.HereweevaluateourmodelusingamultimodalMRand

CTinputtoachievesegmentation(Section5.3.1)andmodality
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arately.Sincetheaimistospecificallyevaluatethee↵ectof

multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.
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CTtestsets,obtainedwhentrainingamodelwithdi↵ering
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ofCTtothefullMRdataset,andviceversa;thisdoesnotonly
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performance(increasingfrom0.23to0.56).
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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the image modality factor. As a result, it can be trained using
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intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and
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In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation
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objectiveusedtofine-tunethewholemodelalsobenefitstest

segmentationaccuracy,whichisraisedfrom0.756to0.832.
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auxiliarytaske↵ectivelybroughtusclosertotherangeofhav-

ing50%annotatedmasks(secondrowinTable2).Thus,aux-

iliarytasks,suchasLVVprediction,whicharerelatedtothe
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0.819to0.899.
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anatomicalinformationandthenon-spatialfactorcapturingthe
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arately.Sincetheaimistospecificallyevaluatethee↵ectof

multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering
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respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR
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improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).
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itytransformations,itcanbeusedassuch,whentrainedwith
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ground truth values from 17 subjects. We find that the aver-
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is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test
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While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the
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a multi-task setting and leverage supervision present in typical

clinical settings.
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only
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can then be used to calculate the LVV o✏ine.
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data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-
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ofCTtothefullMRdataset,andviceversa;thisdoesnotonly
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thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test
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While this is for a single split, observe that using LVV as an
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ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.
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By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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aReLUactivation),andtwofullyconnectedlayersof16and1

neuronsrespectively,bothfollowedbyaReLUactivation.This

networkregressesthesumofthepixelsoftheleftventricle,

takingasinputthespatialrepresentation.Thepredictedsum

canthenbeusedtocalculatetheLVVo✏ine.

Usingapre-trainedmodeloflabelledimagescorresponding
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tunethewholemodelwhilsttrainingthearearegressorusing

groundtruthvaluesfrom17subjects.Wefindthattheaver-

ageLVVoverthetestvolumes(overbothEDandESframes)
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normalrangeasreportedin(Baietal.,2018a).Themulti-task
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segmentationaccuracy,whichisraisedfrom0.756to0.832.
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ing50%annotatedmasks(secondrowinTable2).Thus,aux-

iliarytasks,suchasLVVprediction,whicharerelatedtothe

endocardialbordersegmentationcanbeusedtotrainmodelsin
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clinicalsettings.
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5.3.1.Multimodalsegmentation
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frombothMRandCTsegmentationmasks.Infact,weshow
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provesegmentationcomparedtowhenusingeachmodalitysep-

arately.Sincetheaimistospecificallyevaluatethee↵ectof

multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-

respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%

ofCTtothefullMRdataset,andviceversa;thisdoesnotonly

improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith

multimodaldataasinput.Onlytheimagemodalityfactorz
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corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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thickness to get the volume occupied by each slice. The final
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similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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takingasinputthespatialrepresentation.Thepredictedsum
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tunethewholemodelwhilsttrainingthearearegressorusing
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normalrangeasreportedin(Baietal.,2018a).Themulti-task

objectiveusedtofine-tunethewholemodelalsobenefitstest
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anatomicalinformationandthenon-spatialfactorcapturingthe
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CTinputtoachievesegmentation(Section5.3.1)andmodality
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WetrainSDNetusingamultimodalinputofMRandCT

datawiththeaimtoimprovelearningoftheanatomicalfactor

frombothMRandCTsegmentationmasks.Infact,weshow

belowthatwhenmixingdatafromMRandCTimages,weim-

provesegmentationcomparedtowhenusingeachmodalitysep-

arately.Sincetheaimistospecificallyevaluatethee↵ectof

multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-

respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR
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improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith

multimodaldataasinput.Onlytheimagemodalityfactorz

Agisilaos Chartsias et al. / Medical Image Analysis (2018) 9

Fig. 5. Segmentation example for di↵erent numbers of labelled images from the ACDC dataset. Blue, green and red show the models prediction for MYO,

LV and RV respectively.

cavity, then multiply thissum with thepixel resolution to get the

corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z

Agisilaos Chartsias et al. / Medical Image Analysis (2018) 9

Fig. 5. Segmentation example for di↵erent numbers of labelled images from the ACDC dataset. Blue, green and red show the models prediction for MYO,

LV and RV respectively.

cavity, then multiply thissum with thepixel resolution to get the

corresponding area and then multiply the result with the slice

thickness to get the volume occupied by each slice. The final

volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two
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While this is for a single split, observe that using LVV as an
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iliary tasks, such as LVV prediction, which are related to the
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.
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By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neuronsrespectively,bothfollowedbyaReLUactivation.This

networkregressesthesumofthepixelsoftheleftventricle,

takingasinputthespatialrepresentation.Thepredictedsum

canthenbeusedtocalculatetheLVVo✏ine.

Usingapre-trainedmodeloflabelledimagescorresponding
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tunethewholemodelwhilsttrainingthearearegressorusing

groundtruthvaluesfrom17subjects.Wefindthattheaver-

ageLVVoverthetestvolumes(overbothEDandESframes)
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normalrangeasreportedin(Baietal.,2018a).Themulti-task
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ing50%annotatedmasks(secondrowinTable2).Thus,aux-

iliarytasks,suchasLVVprediction,whicharerelatedtothe
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amulti-tasksettingandleveragesupervisionpresentintypical

clinicalsettings.
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Themulti-taskobjectiveinfactbenefitstheDicescoreforbothlabelsindi-
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multimodaldata,withthespatialfactorcapturingthecommon

anatomicalinformationandthenon-spatialfactorcapturingthe
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CTinputtoachievesegmentation(Section5.3.1)andmodality

transformation(Section5.3.2).

5.3.1.Multimodalsegmentation
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belowthatwhenmixingdatafromMRandCTimages,weim-
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arately.Sincetheaimistospecificallyevaluatethee↵ectof

multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-

respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%
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improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith

multimodaldataasinput.Onlytheimagemodalityfactorz
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convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation

Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with

multimodal data as input. Only the image modality factor z
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neuronsrespectively,bothfollowedbyaReLUactivation.This
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tunethewholemodelwhilsttrainingthearearegressorusing
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frombothMRandCTsegmentationmasks.Infact,weshow

belowthatwhenmixingdatafromMRandCTimages,weim-
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multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.
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CTtestsets,obtainedwhentrainingamodelwithdi↵ering
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respondtoimagesobtainedfromonesubject.Trainingwith
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Predicting the LVV as another output of SDNet follows a

similar process to the one used to calculate the ground truth

values. We design a small neural network consisting of two

convolutional layers(each having a3⇥3⇥16 kernel followed by

a ReLU activation), and two fully connected layers of 16 and 1

neurons respectively, both followed by aReLU activation. This

network regresses the sum of the pixels of the left ventricle,

taking as input the spatial representation. The predicted sum

can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding

to one subject (last row in Table 2 with 6% labels), we fine-

tune the whole model whilst training the area regressor using

ground truth values from 17 subjects. We find that the aver-

age LVV over the test volumes (over both ED and ES frames)

is 59.37mL with a standard deviation of 3.7, which is in the

normal range as reported in (Bai et al., 2018a). The multi-task

objective used to fine-tune the whole model also benefits test

segmentation accuracy, which is raised from 0.756 to 0.832.3

While this is for a single split, observe that using LVV as an

auxiliary task e↵ectively brought us closer to the range of hav-

ing 50% annotated masks (second row in Table 2). Thus, aux-

iliary tasks, such as LVV prediction, which are related to the

endocardial border segmentation can beused to train models in

a multi-task setting and leverage supervision present in typical

clinical settings.
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vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
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the image modality factor. As a result, it can be trained using

multimodal data, with the spatial factor capturing the common

anatomical information and the non-spatial factor capturing the

intensity information unique to each image’s particular modal-

ity. Here we evaluate our model using a multimodal MR and

CT input to achieve segmentation (Section 5.3.1) and modality

transformation (Section 5.3.2).

5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and

the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering

amounts of MR and CT data. Results for 12.5% of data cor-

respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
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While this is for a single split, observe that using LVV as an
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multimodal data leads to improvements in both individual MR
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While this is for a single split, observe that using LVV as an
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a multi-task setting and leverage supervision present in typical

clinical settings.

3Themulti-task objective in fact benefits theDicescore for both labels indi-

vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from

0.819 to 0.899.

5.3. Multimodal learning

By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using
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intensity information unique to each image’s particular modal-
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CT input to achieve segmentation (Section 5.3.1) and modality
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5.3.1. Multimodal segmentation

We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-

provesegmentation compared to when using each modality sep-

arately. Since the aim is to specifically evaluate the e↵ect of

multimodal training in segmentation accuracy, unlabelled im-

ages are not considered hereas part of the training process, and
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In Table 3 we present the Dice score, over held out MR and

CT test sets, obtained when training a model with di↵ering
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respond to images obtained from one subject. Training with

multimodal data leads to improvements in both individual MR

and CT performances. This isthecaseeven when weadd 12.5%

of CT to the full MR dataset, and vice versa; this does not only

improve theMR (increasing from 0.74 to 0.76), but also theCT

performance (increasing from 0.23 to 0.56).
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We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor

from both MR and CT segmentation masks. In fact, we show

below that when mixing data from MR and CT images, we im-
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We train SDNet using a multimodal input of MR and CT
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groundtruthvaluesfrom17subjects.Wefindthattheaver-

ageLVVoverthetestvolumes(overbothEDandESframes)

is59.37mLwithastandarddeviationof3.7,whichisinthe

normalrangeasreportedin(Baietal.,2018a).Themulti-task

objectiveusedtofine-tunethewholemodelalsobenefitstest

segmentationaccuracy,whichisraisedfrom0.756to0.832.
3

Whilethisisforasinglesplit,observethatusingLVVasan

auxiliarytaske↵ectivelybroughtusclosertotherangeofhav-

ing50%annotatedmasks(secondrowinTable2).Thus,aux-

iliarytasks,suchasLVVprediction,whicharerelatedtothe

endocardialbordersegmentationcanbeusedtotrainmodelsin

amulti-tasksettingandleveragesupervisionpresentintypical

clinicalsettings.

3
Themulti-taskobjectiveinfactbenefitstheDicescoreforbothlabelsindi-

vidually:MYOaccuracyrisesfrom0.633to0.706andLVaccuracyrisesfrom

0.819to0.899.

5.3.Multimodallearning

Bydesign,ourmodelseparatestheanatomicalfactorfrom

theimagemodalityfactor.Asaresult,itcanbetrainedusing

multimodaldata,withthespatialfactorcapturingthecommon

anatomicalinformationandthenon-spatialfactorcapturingthe

intensityinformationuniquetoeachimage’sparticularmodal-

ity.HereweevaluateourmodelusingamultimodalMRand

CTinputtoachievesegmentation(Section5.3.1)andmodality

transformation(Section5.3.2).

5.3.1.Multimodalsegmentation

WetrainSDNetusingamultimodalinputofMRandCT

datawiththeaimtoimprovelearningoftheanatomicalfactor

frombothMRandCTsegmentationmasks.Infact,weshow

belowthatwhenmixingdatafromMRandCTimages,weim-

provesegmentationcomparedtowhenusingeachmodalitysep-

arately.Sincetheaimistospecificallyevaluatethee↵ectof

multimodaltraininginsegmentationaccuracy,unlabelledim-

agesarenotconsideredhereaspartofthetrainingprocess,and

themodelsaretrainedwithfullsupervisiononly.

InTable3wepresenttheDicescore,overheldoutMRand

CTtestsets,obtainedwhentrainingamodelwithdi↵ering

amountsofMRandCTdata.Resultsfor12.5%ofdatacor-

respondtoimagesobtainedfromonesubject.Trainingwith

multimodaldataleadstoimprovementsinbothindividualMR

andCTperformances.Thisisthecaseevenwhenweadd12.5%

ofCTtothefullMRdataset,andviceversa;thisdoesnotonly

improvetheMR(increasingfrom0.74to0.76),butalsotheCT

performance(increasingfrom0.23to0.56).

5.3.2.Modalitytransformation

Althoughourmethodisnotspecificallydesignedformodal-

itytransformations,itcanbeusedassuch,whentrainedwith

multimodaldataasinput.Onlytheimagemodalityfactorz
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What else we can do 

✓ MRI and CT1

✓ Leverage EHR1

✓ Exploit temporal relationships2

✓ Expand to pathology 4,5

✓ Use multi-input6

1. Chartsias, Joyce, Papanastasiou, Semple, Williams, Newby, Dharmakumar, Tsaftaris

(2018 & 2019)  Disentangled Representation Learning in Cardiac Image Analysis. MedIA and MICCAI

2. Valvano, Chartsias, Leo, Tsaftaris Temporal Consistency Objectives Regularize the Learning of Disentangled Representations 

DART @MICCAI 2019

3. Chartsias, Papanastasiou, Wang, Semple, Newby, Dharmakumar, Tsaftaris, Disentangle, align and fuse for multimodal and zero-shot image 

segmentation. STACOM @ MICCAI 2019, arXiv 1911.04417 , & IEEE TMI 2020

4. Jiang, Wang, Chartsias, Tsaftaris, Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling,” 2020 

MyoPS Challenge, STACOM, a MICCAI 2020 workshop  

5. Jiang, Chartsias, Zhang, Papanastasiou, Semple, Dweck, Semple, Dharmakumar, Tsaftaris, “Semi-supervised Pathology Segmentation with 

Disentangled Representations," DART, a MICCAI 2020 workshop 

6. Chartsias, Papanastasiou, Wang, Semple, Newby, Dharmakumar, Tsaftaris, Disentangle, align and fuse for multimodal and zero-shot image 

segmentation. STACOM @ MICCAI 2019, arXiv 1911.04417, & IEEE TMI 2020

Input 
image

Ground 
truth mask

Predicted 
mask

Reconstruction Pseudo-healthy
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How we review CMR 

images in a protocol

https://www.healthcareittoday.com/wp-content/uploads/2018/12/1197119827-radiology-imaging-command-center-scans-screens.jpg

• Use multiple inputs 

simultaneously

• Relate across inputs to 

find the “common”

• Find and separate the 

“unique”
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DAFnet: Disentangle, Align and Fuse

disentangle align fuse

Chartsias, Papanastasiou, Wang, Semple, Newby, Dharmakumar, & Tsaftaris, Disentangle, align and fuse for multimodal and zero-shot image 

segmentation. STACOM @ MICCAI 2019, arXiv 1911.04417, & IEEE TMI 2020 code: https://github.com/vios-s/multimodal_segmentation
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ACHIEVING GENERALISATION

Because of better representations
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Remember this!

Gold standard to isolating effects of e.g. scanner: the same 

patient “travelling” to be imaged by all vendors

Vendor A

Vendor B

Vendor C

Now we can simulate 

this!
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New combinations of factors

Extract factors Create new data

Anatomy 

Encoder

Sensor A Sensor B

Sensor C

Decoder

Three sets of anatomy 

factors

Sample

anatomy

Sample

Sensor type

Generated 

data

Sensor 

Encoder
Three sets of sensor factors

Liu, Thermos, Chartsias, O'Neil, & Tsaftaris (2020) Disentangled Representations for 

Domain-generalized Cardiac Segmentation. arXiv 2008.11514 M&Ms STACOM@MICCAI 2020 Challenge

1. Take images from different sites/scanners

2. Separate anatomy from sensor variation

3. Create new virtual combinations
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We can improve the representations

• Penalise if separation of variation is not good 

– Meta-learning domain generalization

Results training on 3 sites, testing on another: 

?

Liu, Thermos, O'Neil, & Tsaftaris (2021) Semi-supervised Meta-learning with Disentanglement for Domain-generalised Medical Image 

Segmentation. MICCAI 2021

Fully 

supervised 

(nnUnet)

Random mixing

(semi-supervised + 

disentanglement)

Fully supervised 

meta-learning (w/o 

disentanglement)

Semi-supervised 

meta-learning

20% 64.85 (5.2) 76.73 (11) 73.5 (12) 79.6 (11)

100% 71.51 (5.4) 81.37 (11) 80.95 (13) 82.25 (11)
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We can add bespoke anatomical diversity

Right Ventricle

Abnormality

Hypertrophic 

Cardiomyopathy

Normal

Unexplored 

Manifold

Subject A Subject B Subject A’

Hypertrophic Cardiomyopathy Normal (Healthy)

± =

Hypertrophic Cardiomyopathy 

Thermos, Liu, O'Neil, Tsaftaris (2021) Controllable cardiac synthesis via disentangled anatomy arithmetic. MICCAI 2021

Patent pending.

x
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To correct for prevalence shifts

✓ Augment training sets:

– Rare pathologies

– Under-represented sites/hospitals

– Gender/race imbalance

✓ Data can be generated

as desired

An example of editing

Ventricle 

factor

Generated 

Image

Make ventricle smaller

Right Ventricle

Abnormality

Hypertrophic 

Cardiomyopathy

Normal

Unexplored 

Manifold
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Correcting age distribution

Campello et al, Cardiac aging synthesis from cross-sectional data with conditional

generative adversarial networks, work in progress
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Generalisation by test-time training

• TTT: adapt model on the fly without annotations

• Encoders, decoders, discriminators all capture priors

• At test time we throw components away 

• Stop! Reuse them [1,2]

Legend:

Input/output images Adversarial gradients Updated weights

ỹ

ỹxtrain

xtest

Segmentor 

Segmentor 

r eal / fake

gradients (ni ters)

gradients 

Discriminator 

Discriminator 

+

+

r eal / fake

1. Valvano, Leo & Tsaftaris, Stop Throwing Away Discriminators! Re-using Adversaries for Test-Time Training, DART@ MICCAI 2021

2. Valvano, Leo, & Tsaftaris Re-using Adversarial Mask Discriminators for Test-time Training under 

Distribution Shift, arXiv, MELBA 2022

Anatomy info

Anatomy 
Encoder

Modality 
Encoder

Decoder

[0.1 0.7 …]

Segmentor

Sensing info

Predictor Other tasks
(e.g. LVV)
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Gains

Prediction

After TTTBefore TTT
TrueInputDataset

ACDC

LVSC

CHAOS

ACDC1.5T 3T

M & Ms
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AI and Health

Sermesant, Delingette, Cochet, Jais, Ayache, Applications of artificial intelligence in cardiovascular imaging. Nature Rev Cardiology 2021

Sanchez & Tsaftaris, (2022) Diffusion Causal Models for 

Counterfactual Estimation. Conference on Causal Learning and 

Reasoning
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Thanks to my team…

We have several PhD/RA openings if you want to join us!

vios.science
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…my collaborators…

UK
– S. Weir

– A. Smout

– A. O’Neil

– A. Frangi

– D. Newby

– S. Semple

– G. Papanastasiou

– M. Williams

World

– R. Dharmakumar

– X. Papademetris

– N. Merchant

– H. Scharr

– P. Perata

– S. Bakas

– T. Arbel

– L. Maier-Hein
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…funders and you!

Funding:

NIH 4R01HL091989

NIH 1R01HL136578

EP/N510129/1 

EP/P022928/1

BB/N02334X/1

BB/P023487/1

Sotirios A. Tsaftaris, PhD

Email: S.Tsaftaris@ed.ac.uk

URL: http://vios.science

mailto:S.Tsaftaris@ed.ac.uk
http://vios.science/

